FACULTY OF ENGINEERING

B.E. I - Year (New) (Main) Examination, May / June 2015

Subject : Mathematics - I

Time : 3 Hours
Max. Marks: 75
Note: Answer all questions from Part - A and answer any five questions from Part-B.

PART - A (25 Marks)

1 Test the series $\sum\left(\frac{1}{2^{n}}+\frac{1}{n}\right)$ for convergence.
2 State Raabe's test.
3 Find the Taylor series expansion of $f(x)=e^{x}$ about $x=1$.
4 Obtain the curvature of the curve $x^{4}+y^{4}=2$ at $(1,1)$.
5 If $u=f(x-y, y-z, z-x)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
6 If $u=x^{2}+y^{2}, v=2 x y$, find $\frac{\partial(u, v)}{\partial(x, y)}$ at (1,2).
7 Find div \bar{F}, where $\bar{F}=\operatorname{grad}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}+3 \mathrm{xyz}\right)$.
8 Find the constants a, b, c such that the vector
$\bar{F}=(x+2 y+a z) I+(b x-3 y-z) j+(4 x+c y+2 z) k$ is irrotational.
9 Determine whether the set of vectors $\{(1,0,0),(0,1,0),(0,0,1)\}$ forms a basis in I^{3}.
10 If the sum of the eigen values of the matrix $A=\left(\begin{array}{ccc}1 & 4 & 5 \\ 0 & k & 2 \\ -1 & 2 & 2 k\end{array}\right)$ is 10 , find k .

PART - B (50 Marks)

11 (a) Discuss the convergence of the series $\sum\left(1+\frac{1}{n}\right)^{n} x^{n}, \mathrm{x}>0$.
(b) Test the series $\sum(-1)^{n-1} \frac{n}{n^{2}+1}$ for absolute convergence or conditional convergence.

12 (a) State and prove Lagrange mean value theorem.
(b) Sketch the graph of the curve $y^{2}(2-x)=x^{3}$.

13 (a) If $\mathrm{f}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{cl}\frac{x y}{\sqrt{x^{2}+y^{2}}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $(0,0)$.
(b) Find the local maximum and minimum values of the function $f(x)=3 x^{4}-2 x^{3}-6 x^{2}+6 x+1$ in $[0,2]$.

14 (a) Find the directional derivative of $f(x, y, z)=x^{2}-y^{2}+2 z^{2}$ at the print $P(1,2,3)$ in the direction of the line $P Q$ where Q in the point $(5,0,4)$.
(b) Apply divergence theorem to evaluate $\iint_{S} \bar{r} . \hat{n} d s$, where $\bar{r}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk}$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=9$.

15 (a) Reduce the matrix $A=\left(\begin{array}{cccc}1 & 4 & 5 & 2 \\ 2 & 8 & 6 & 7 \\ 3 & 5 & 2 & 1 \\ -1 & 2 & 3 & 0\end{array}\right)$ to echelon form and hence find its rank.
(b) State Cayley-Hamilton theorem and use it to find the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
2 & 3 & 4 \tag{5}\\
0 & 1 & 5 \\
0 & 0 & -1
\end{array}\right)
$$

16 (a) Find the envelope of the family of lines $\mathrm{y}=\mathrm{c} \mathrm{x}+\sqrt{1+c^{2}}, \mathrm{c}$ is the parameter.
(b) Show that the function $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2}+y^{2}}{x^{2}-y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$ is not continuous at $(0,0)$.

17 (a) If $f(x, y, z)=x+y-2 z^{2}$, compute grad f and verify that curl grad $f=\overline{0}$.
(b) Obtain the symmetric matrix A for the quadratic form $Q=2 x y+2 y z+2 z x$ and also find the nature of the quadratic form.

FACULTY OF ENGINEERING AND INFORMATICS

B.E. I - Year (Main) Examination, May / June 2015

Subject : Mathematics - I
Time : 3 hours
Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.
PART - A (25 Marks)

1 Let $f^{\prime}(x)=\frac{1}{3-x^{2}}$ and $\mathrm{f}(0)=1$. Find an interval in which $\mathrm{f}(1)$ lies.
2 Find the equation of the envelope of the family of straight lines $y=c x+c^{2}$ where c is a parameter.
3 Prove that $f(x, y)=\left\{\begin{aligned} \frac{x^{2}+x y+x+y}{x+y} & ;(x, y) \neq(2,2) \\ 4 & ;(\mathrm{x}, \mathrm{y})=(2,2)\end{aligned}\right.$ is discontinuous at the point $(2,2)$.

4 If $f(x, y)=\tan ^{-1}(x y)$, find an approximate value of $f(1.1,0.8)$ using the Taylor series linear approximation.

5 Evaluate the double integral $\iint_{R} x y d x d y$, where ' R ' is the region bounded by the x-axis, the line $y=2 x$ and the parabola $x^{2}=4 a y$.

6 If \bar{a} is a constant vector and $\bar{r}=x i+y j+z k$ then prove that $\nabla X(a x \bar{r})=2 \bar{a}$.
7 Test whether the vectors (1,0,0), (0,2,0), (0,0,3) are linearly independent or not.
8 Find all values of λ for which rank of the matrix.

$$
A=\left[\begin{array}{cccc}
\lambda & -1 & 0 & 0 \tag{3}\\
0 & \lambda & -1 & 0 \\
0 & 0 & \lambda & -1 \\
-6 & 11 & -6 & 1
\end{array}\right]
$$

is equal to 3 .
9 Test the convergence of the series $\sum\left[\frac{(1+n x)^{n}}{n^{n}}\right]$.
10 Show by an example that every convergent series need not be absolute convergent.

PART - B (50 Marks)

11 a) State and prove Lagrange's mean value theorem.
b) Find the evolute of $x^{2}=4 a y$.

12 a) Find the shortest distance between the line $y=10-2 x$ and the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
b) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does not exist.

13 a) Show that the vector field defined by the vector function $\bar{V}=x y z(y z i+x z j+x y k)$ is
conservative.
b) Show that $\int_{C}(y z-1) d x+\left(z+x z+z^{2}\right) d y+(y+x y+2 y z) d z$ is independent of the path of integration from $(1,2,2)$ to $(2,3,4)$. Evaluate the integral.

14 a) Prove that eigen values of i) an Hermitian matrix are real
ii) a skew-Hermitian matrix are zero or purely imaginary.
b) Examine $\quad A=\left[\begin{array}{ccc}1 & 0 & i \\ 0 & 1 & 0 \\ -i & 0 & 3\end{array}\right]$ is positive definite.

15 a) Discuss the convergence of the series $\sum\left[\frac{1.35 . .(2 n-1)}{2.46 . .(2 n)} \frac{x^{2 n}}{2 n}\right]$.
b) Test the convergence of the series $1+3 x+5 x^{2}+7 x^{3}+\ldots$.

16 a) State and prove Cayley Hamilton theorem.
b) Find the eigen values and the corresponding eigen vectors.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 2 \tag{5}\\
0 & 2 & 1 \\
-1 & 2 & 2
\end{array}\right]
$$

17 a) If $x=r \cos \theta, y=r \sin \theta$, then find $\left(\frac{\partial r}{\partial x}\right)^{2}+\left(\frac{\partial r}{\partial y}\right)^{2}$.
b) If $u=\log \left[x^{2}+x y+y^{2}\right]$ then find $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.

