FACULTY OF ENGINEERING

B.E. I – Year (New) (Main) Examination, May / June 2015

Subject : Mathematics - I

Time : 3 Hours

Max. Marks: 75

Note: Answer all questions from Part - A and answer any five questions from Part-B.

PART – A (25 Marks)

1	Test the series $\sum \left(\frac{1}{2^n} + \frac{1}{n}\right)$ for convergence.	(3)
2 3 4 5	State Raabe's test. Find the Taylor series expansion of $f(x) = e^x$ about x=1. Obtain the curvature of the curve $x^4 + y^4 = 2$ at (1, 1). If $u = f(x-y, y-z, z-x)$, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} = 0$.	(2) (3) (2) (3)
6	If $u = x^2 + y^2$, $v = 2xy$, find $\frac{\partial(u, v)}{\partial(x, y)}$ at (1, 2).	(2)
7 8	Find div \overline{F} , where \overline{F} = grad (x ³ +y ³ +z ³ +3xyz). Find the constants a, b, c such that the vector	(3)
	$\overline{F} = (x+2y+az)I + (bx-3y-z)j + (4x+cy+2z)k$ is irrotational.	(2)
9	Determine whether the set of vectors $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ forms a basis in IR ³ .	(3)
10	If the sum of the eigen values of the matrix $A = \begin{pmatrix} 1 & 4 & 5 \\ 0 & k & 2 \\ -1 & 2 & 2k \end{pmatrix}$ is 10, find k.	(2)
PART – B (50 Marks)		
11	(a) Discuss the convergence of the series $\sum \left(1 + \frac{1}{n}\right)^n x^n$, x > 0.	(5)
	(b) Test the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2 + 1}$ for absolute convergence or conditional	
	convergence.	(5)

12 (a) State and prove Lagrange mean value theorem.(5)(b) Sketch the graph of the curve $y^2(2-x)=x^3$.(5)

13 (a) If
$$f(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
, find $\frac{\partial f}{\partial x} and \frac{\partial f}{\partial y}$ at (0,0). (5)

(b) Find the local maximum and minimum values of the function $f(x)=3x^4 - 2x^3 - 6x^2 + 6x + 1$ in [0,2].

(5)

..2

- 14 (a) Find the directional derivative of $f(x, y, z) = x^2 y^2 + 2z^2$ at the print P(1, 2, 3) in the direction of the line PQ where Q in the point (5, 0, 4). (5)
 - (b) Apply divergence theorem to evaluate $\iint_{s} \overline{r} \cdot \hat{n} \, ds$, where $\overline{r} = xi + yj + zk$ and S is the surface of the sphere $x^2 + y^2 + z^2 = 9$.
- 15 (a) Reduce the matrix $A = \begin{pmatrix} 1 & 4 & 5 & 2 \\ 2 & 8 & 6 & 7 \\ 3 & 5 & 2 & 1 \\ -1 & 2 & 3 & 0 \end{pmatrix}$ to echelon form and hence find its rank. (5)
 - (b) State Cayley-Hamilton theorem and use it to find the inverse of the matrix

$$A = \begin{pmatrix} 2 & 3 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & -1 \end{pmatrix}$$
(5)

- 16 (a) Find the envelope of the family of lines $y = c x + \sqrt{1 + c^2}$, c is the parameter. (5)
 - (b) Show that the function $f(x, y) = \begin{cases} \frac{x^2 + y^2}{x^2 y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$ is not continuous at (0, 0).
- (5)

(5)

17 (a) If $f(x, y, z) = x + y - 2z^2$, compute grad f and verify that curl grad $f = \overline{0}$. (5) (b) Obtain the symmetric matrix A for the quadratic form Q = 2xy + 2yz + 2zx and also find the nature of the quadratic form. (5)

FACULTY OF ENGINEERING AND INFORMATICS

B.E. I – Year (Main) Examination, May / June 2015

Subject : Mathematics - I

Time : 3 hours

Max. Marks: 75

(3)

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART – A (25 Marks)

1 Let $f'(x) = \frac{1}{3-x^2}$ and f(0) = 1. Find an interval in which f(1) lies. (2)

2 Find the equation of the envelope of the family of straight lines $y = cx + c^2$ where c is a parameter.

3 Prove that
$$f(x,y) = \begin{cases} \frac{x^2 + xy + x + y}{x + y}; (x,y) \neq (2,2) \\ 4 & ; (x,y) = (2,2) \end{cases}$$
 (2)

is discontinuous at the point (2, 2).

- 4 If $f(x, y) = \tan^{-1} (x y)$, find an approximate value of f(1.1, 0.8) using the Taylor series linear approximation. (3)
- 5 Evaluate the double integral $\iint_{\mathcal{R}} xy \, dx \, dy$, where 'R' is the region bounded by the x-axis, the line y = 2x and the parabola $x^2 = 4ay$. (2)
- 6 If \overline{a} is a constant vector and $\overline{r} = xi + yj + zk$ then prove that $\nabla X(ax\overline{r}) = 2\overline{a}$. (3)
- 7 Test whether the vectors (1,0,0), (0,2,0), (0,0,3) are linearly independent or not. (2)
- 8 Find all values of λ for which rank of the matrix.

$$A = \begin{bmatrix} \lambda & -1 & 0 & 0 \\ 0 & \lambda & -1 & 0 \\ 0 & 0 & \lambda & -1 \\ -6 & 11 & -6 & 1 \end{bmatrix}$$

is equal to 3.

- 9 Test the convergence of the series $\sum \left[\frac{(1+nx)^n}{n^n}\right]$. (2)
- 10 Show by an example that every convergent series need not be absolute convergent.

..2

(3)

(3)

PART – B (50 Marks)